

Interactive Ranking Uncertain Multivariate Ordinal Time Series: Citizen Science and Uncertainty

MC1 Award for Excellent Quantification of Abnormalities

Shichao Jia, Jiaqi Wang, Zeyu Li, and Jiawan Zhang Tianjin University

Agenda

- Data
- Questions & Task Abstraction
- Visual Design
- System
- Insights
- Conclusion

Data

- 19 locations \rightarrow multivariate (geographic)
- 6 dimensions \rightarrow multivariate (descriptive)
- 11 levels $(0 10) \rightarrow \text{ordinal}$
- Survey data \rightarrow uncertain
- Every 5 minutes \rightarrow time series
- **Summary**: Uncertain Multivariate Ordinal Time Series

Questions & Task Abstraction

- Task for Q1: Prioritize neighborhoods based on different dimensions
- Task for Q2: Prioritize neighborhoods based on uncertainty
- Task for Q3: Visualize uncertain multivariate ordinal time series

Visual Design: Hexagon Map

• Hexagon map: encode multivariate data & summarized data

Visual Design: Line chart

- Number of records every neighborhood along the time
- Filter control panel
- Peaks: pre-earthquake & major earthquakes
- Breakpoints: may due to the power outages

VIS2019

	1	1	1	I	Ι	I	I	1
D	150	200	250	300	350	400	450	500

Visual Design: Heat map

- Measure the damage
- Mean value $S(d_j)$

 d_j : dimension j

Palace Hills

Northwest

Old Town

Safe Town

Southwes

Visual Design: Heat map

shake_intensity sewer and water

roads and bridges

10

power

buildings

medical

Mean Value

VIS2019

Entropy

 It seems that the number of the records has negative correlation with the mean values !

(one block time: 1 hour)

Time

<u>•</u>

Problem

 Without considering uncertainty, it seems that emergency responders should respond every time, even when earthquakes do not break.

Problem

- It is not easy to compare uncertainty using only hexagons.
- Ex. For hexagons 5 and 9, which record is more uncertain?
- Ex. For hexagon 9, which dimension is more uncertain?

Quantification of uncertainty !

Visual Design: Heat map

- Qualification of uncertainty
- Normalized entropy
- $H_{11}(d_j) = -\sum_{i=0}^{10} p_i(d_j) \log_{11} p_i(d_j)$

 d_j : dimension *j*, $p_i(d_j)$: frequency of the level *i*

• $H_{11}(d_j) \in [0, 1]$

Visual Design: Interactive Rank

*VIS2019

	1	1	1	I	Ι	I	I	1
D	150	200	250	300	350	400	450	500

Conclusion

- Quantification of Uncertainty
- Interaction to rank time series
- Future: can be easily applied to the streaming setting

MC1 Award for Excellent Quantification of Abnormalities

Shichao Jia, Jiaqi Wang, Zeyu Li, and Jiawan Zhang Tianjin University

Any Questions?