

Dual Space Coupling Model Guided Overlap-Free Scatterplot

Zeyu Li, Ruizhi Shi, Yan Liu, Shizhuo Long, Ziheng Guo, Shichao Jia, and Jiawan, Zhang Tianjin University

Agenda

- Motivation
- Previous work
- Dual-space coupling model
- Methods
- Evaluation
- Conclusion

Motivation

Example scatterplots created by different ways:

projection results of high-dimensional data **coordinates** from geographic space

layout results of large-scale graphs

regular scatterplots with two semantic axes

Motivation

S2022

four mixed classes

non-uniform

20% transparency

20% transparency

density

In reality:

Looks like: In reality:

The overdraw problem severely damages visual tasks of scatterplots:

- density perception
- cluster identification
- shape examination
- trend analysis
- outlier identification
- similar data visual inspection

Data Space Methods

data transformation $\sqrt{}$ view transformation $\mathbf{\times}$

Visual Space Methods

view transformation \blacktriangledown data transformation $\mathbf{\times}$

Hybrid Methods

view transformation data transformation $\sqrt{}$

Data Space Methods

data transformation view transformation

1. Data sampling or aggregation

- ineludible data loss
- cannot eliminate overlaps
- break one-to-one correspondence

2. Jitter

- cannot eliminate overlaps
- may disturb data features

Visual Space Methods Hybrid Methods

view transformation data transformation $\mathbf{\times}$

Data Space Methods data transformation view transformation

1. Data sampling or aggregation

- ineludible data loss and bias
- cannot eliminate overlaps
- break one-to-one correspondence $\begin{array}{ccc} 1 & 2. \text{Node dispersion} & & \\ \hline & & \end{array}$ 3. Subspace mapping methods

2. Jitter

where $\cdots \Rightarrow$

- cannot eliminate overlaps
- may disturb data features

S2022

Visual Space Methods Hybrid Methods

view transformation data transformation

1. Appearance adjustment

- time-consuming
- color blending
- **2. Node dispersion**

- poor scalability
- severe distortion
- cannot eliminate overlaps

view transformation data transformation

• shape and density distortion in high density regions

Data Space Methods data transformation view transformation X

1. Data sampling or aggregation

- ineludible data loss and bias
- cannot eliminate overlaps
- break one-to-one correspondence

2. Jitter

- cannot eliminate overlaps
- may disturb data features
- cannot eliminate overlaps

S2022

Visual Space Methods \parallel **Hybrid Methods** view transformation data transformation **1. Appearance adjustment**

- time-consuming
- color blending
- **2. Node dispersion**

- poor scalability
- severe distortion
- cannot eliminate overlaps

view transformation data transformation

- ineludible data loss
- break one-to-one correspondence
- **3. Subspace mapping methods**

• shape and density distortion in high density regions

Dual-space coupling model - four criteria and a goal

 $DS = \{x, y\}$ data set in data space, each data point is scale-free and immaterial $NS = \{x, y, r\}$ visual node set in visual space, each visual node has a measurable radius

Four criteria that the overdraw solution should consider:

C1. Mutual Exclusion of Data Points: ------------ $\forall d_1, d_2 \in DS$, $d_1 \cap_D d_2 = \emptyset$

C2. Mutual Exclusion of Visual Nodes: ---------- $\forall n_1, n_2 \in NS$, $n_1 \cap_V n_2 = \emptyset$

*C3***.** Data-Visual Space Bijection:

*C4***.** Data-Visual Space Distribution Consistency: ------------- $F_V(NS) \sim F_D(DS)$

The **goal** of a desired overdraw solution:

 $argmax(similarity(F_V(NS), F_D(DS))), s.t. C1, C2, C3$ \ast C1 is not mandatory

· VIS2022

Dual-space coupling model - metrics of distribution consistency

Local features:

- KNN preservation
- Displacement minimization

Global features:

- Shape preservation
- Density preservation

An individual comprehensive metric:

• Overall similarity

S2022

Related visual tasks:

- outlier identification
- similar data visual inspection

- density perception
- cluster identification
- shape examination
- trend analysis

average similarity observed from multiple angles

Dual-space coupling model - overview

Methods - core idea and three key questions

FM halftoning

The **core idea** to reconstruct density distribution:

- simulate density by controlling the quantity of visual nodes in local area
- hypothesis: the filling rate of colored pixel α perceived density

Three key questions raised by the core idea:

- Q1. How to generate a set of circles that record the data distribution intactly? **Essence: transcribe** the data distribution from data space to visual space
- Q2. How to layout the circles to present the recorded distribution without overlaps? **Essence: translate** the transcribed distribution into visual space
- Q3. How to ensure no overlap occurs during necessary radius configuration? **Essence: express** and **embellish** the distribution in visual space

Methods - pipeline

S2022

 r_{pack}

phyllotaxis

S2022

/IS2022

S2022

/IS2022

Methods - pipeline

1. build polar coordinates

 $\mathbf{N}S' = \frac{\{(x, y, r_{pack}, r_{draw}, y, r_{new})\}}{density disangle}$ density, <mark>dis, angle</mark>) }_{N'}

layout the circles without overlaps to present the recorded distribution

PolarPacking *C2: mutual exclusion of visual nodes C4: distribution consistency*

52022

Methods - pipeline

VIS2022

• VIS2022

Two examples of applying our $\pmb{f}_{\pmb{r}_{draw}}$ to **improve the visual quality** of a scatterplot.

Solve *low contrast* issue faced by HDR datasets by moving the HD-control point to the left

Solve *outlier invisible* issue by raising the LD-control point

S2022

- Competing Algorithms
	- node dispersion methods: *PFS′, PRISM, Gtree,* and *RWordle-L* Sampled3k
	- subspace-mapping methods: *HaGrid* and *DGrid* **——** Full datasets
- Datasets:50 real-world datasets, data scale ranges from 4k to 1M
	- 12 example datasets:

- Our method achieves the best or near the best scores on all metrics compared with the state-of-the-art algorithms.
- Our method takes great advantage on computational efficiency (average time cost: 1/4.6 of Hagrid, 1/47.6 of DGrid).
- Our method presents strong adaptability to high dynamic range(HDR) datasets.

VIS2022

Impact of parameters on time cost:

Time Complexity: $O(N'\sqrt{N'})$

 N' is the number of nodes to be packed, including **data nodes** and **dummy nodes**.

VIS2022

Impact of parameters on metrics:

- Size has a larger impact than k and sampling rate, and all metrics get worse as it raises.
- Size controls the global resolution of the captured structures.
- Our method is fairly robust on parameters.

Our method can maintain data distribution and reveal details hidden by overdraw.

S2022

Our method can overcome the crowded issue faced by state-of-the-art methods.

Our method can present rich and complete details at the micro scale.

Conclusion

- We contribute a dual space coupling model to represent the complex relationship within and between data space and visual space analytically to solve the scatterplot overdraw problem.
- The proposed model introduces a new design space for promising overlap removal algorithm and interaction paradigm.
- We also develop an overlap-free scatterplot visualization method on the basis of the model, which shows competitive advantages compared with the state-of-theart methods.

