

Dual Space Coupling Model Guided Overlap-Free Scatterplot

Zeyu Li, Ruizhi Shi, Yan Liu, Shizhuo Long, Ziheng Guo, Shichao Jia, and Jiawan, Zhang Tianjin University

Agenda

- Motivation
- Previous work
- Dual-space coupling model
- Methods
- Evaluation
- Conclusion

Motivation

Example scatterplots created by different ways:

projection results of high-dimensional data

coordinates from geographic space

layout results of large-scale graphs

regular scatterplots with two semantic axes

Motivation

S2022

Looks like:

four mixed classes

In reality:

non-uniform

density

In reality:

22%

10%

20% transparency

The **overdraw problem** severely damages visual tasks of scatterplots:

- density perception
- cluster identification
- shape examination
- trend analysis
- outlier identification
- similar data visual inspection

Data Space Methods

data transformation \checkmark view transformation 🔀

Visual Space Methods

data transformation 🗙 view transformation 🗸

Hybrid Methods

Data Space Methods

data transformation \checkmark view transformation 🔀

1. Data sampling or aggregation

- ineludible data loss
- cannot eliminate overlaps
- break one-to-one correspondence

2. Jitter

- cannot eliminate overlaps
- may disturb data features

Visual Space Methods

data transformation 🗙 view transformation 🗸

Hybrid Methods

Data Space Methods data transformation view transformation X

1. Data sampling or aggregation

- ineludible data loss and bias
- cannot eliminate overlaps
- break one-to-one correspondence

2. Jitter

- cannot eliminate overlaps
- may disturb data features

Visual Space Methods

data transformation 🗙 view transformation 🗸

1. Appearance adjustment

- time-consuming
- color blending
- 2. Node dispersion

- poor scalability
- severe distortion
- cannot eliminate overlaps

Hybrid Methods

data transformation view transformation

3. Subspace mapping methods

shape and density distortion in high density regions

Data Space Methods data transformation view transformation 💥

1. Data sampling or aggregation

- ineludible data loss and bias
- cannot eliminate overlaps
- break one-to-one correspondence

2. Jitter

——— --- ⇒्ॅ्र्य्ट्रश्च्यः / .

- cannot eliminate overlaps
- may disturb data features
- cannot eliminate overlaps

Visual Space Methods data transformation X view transformation V

- time-consuming
- color blending
- 2. Node dispersion

- poor scalability
- severe distortion
- cannot eliminate overlaps

Hybrid Methods

data transformation view transformation v

- ineludible data loss
- break one-to-one correspondence
- 3. Subspace mapping methods

shape and density distortion in high density regions

Dual-space coupling model - four criteria and a goal

 $DS = \{x, y\}$ data set in data space, each data point is scale-free and immaterial $NS = \{x, y, r\}$ visual node set in visual space, each visual node has a measurable radius

Four criteria that the overdraw solution should consider:

C1. Mutual Exclusion of Data Points: ------ $\forall d_1, d_2 \in DS, d_1 \cap_D d_2 = \emptyset$

C2. Mutual Exclusion of Visual Nodes: ----- $\forall n_1, n_2 \in NS, n_1 \cap_V n_2 = \emptyset$

C3. Data-Visual Space Bijection: ----- $DS \leftrightarrow NS$

C4. Data-Visual Space Distribution Consistency: ------ $F_V(NS) \sim F_D(DS)$

The **goal** of a desired overdraw solution :

 $argmax(similarity(F_V(NS), F_D(DS))), s.t. C1, C2, C3 * C1$ is not mandatory

Dual-space coupling model - metrics of distribution consistency

Local features:

- KNN preservation
- Displacement minimization

Global features:

- Shape preservation
- Density preservation

An individual comprehensive metric:

• Overall similarity

Related visual tasks :

- outlier identification
- similar data visual inspection

- density perception
- cluster identification
- shape examination
- trend analysis

average similarity observed from multiple angles

Dual-space coupling model - overview

Methods - core idea and three key questions

FM halftoning

The **core idea** to reconstruct density distribution:

- simulate density by controlling the quantity of visual nodes in local area
- hypothesis: the filling rate of colored pixel \propto perceived density

Three key questions raised by the core idea:

- Q1. How to generate a set of circles that record the data distribution intactly? **Essence: transcribe** the data distribution from data space to visual space
- Q2. How to layout the circles to present the recorded distribution without overlaps? **Essence: translate** the transcribed distribution into visual space
- Q3. How to ensure no overlap occurs during necessary radius configuration? **Essence: express** and **embellish** the distribution in visual space

Methods - pipeline

	solution to Q1	solution to Q2	solution to Q3
Purpose	generate a set of circles that record the data distribution intactly	layout the circles without overlaps to present the recorded distribution	ensure no overlap occurs during necessary radius configuration
Essence	Transcribe the data distribution from data space to visual space	Translate the transcribed distribution into visual space	Express and embellish the distribution in visual space
Operation	data transformation	view transformation	visual encoding configuration
Method	Distribution Transcriptor	PolarPacking	radius adjustment tool $f_{r_{draw}}$
Satisfied criteria	<i>C3</i> : Bijection <i>C1</i> : mutual exclusion of data points	<i>C2</i> : mutual exclusion of visual nodes <i>C4</i> : distribution consistency	

Purpose	Operation	Method	Satisfied criteria
generate a set of circles that record the data distribution intactly	data transformation	DistributionTranscriptor	<i>C3</i> : Bijection <i>C1</i> : mutual exclusion of data points

VIS2022

Purpose	Operation	Method	Satisfied criteria
generate a set of circles that record the data distribution intactly	data transformation	DistributionTranscriptor	<i>C3</i> : Bijection <i>C1</i> : mutual exclusion of data points

VIS2022

Methods - pipeline

	solution to Q1	solution to Q2	solution to Q3
Purpose	generate a set of circles that record the data distribution intactly	layout the circles without overlaps to present the recorded distribution	ensure no overlap occurs during necessary radius configuration
Essence	Transcribe the data distribution from data space to visual space	Translate the transcribed distribution into visual space	Express and embellish the distribution in visual space
Operation	data transformation	view transformation	visual encoding configuration
Method	DistributionTranscriptor	PolarPacking	radius adjustment tool $f_{r_{draw}}$
Satisfied criteria	C3: Bijection C1: mutual exclusion of data points	<i>C2</i> : mutual exclusion of visual nodes <i>C4</i> : distribution consistency	

Purpose	Operation	Method	Satisfied criteria
layout the circles without overlaps to present the recorded distribution	view transformation	PolarPacking	<i>C2: mutual exclusion of visual nodes</i> <i>C4: distribution consistency</i>

1. build polar coordinates

 $NS' = \frac{\{(x, y, r_{pack}, r_{draw}, density, dis, angle)\}_{N'}}{density, dis, angle}$

Purpose

layout the circles without overlaps to present the recorded distribution

	Operation	Method	Satisfied criteria
on	view transformation	PolarPacking	C2: mutual exclusion of visual nodes C4: distribution consistency

VIS2022

Methods - pipeline

	solution to Q1	solution to Q2	solution to Q3
Purpose	generate a set of circles that record the data distribution intactly	layout the circles without overlaps to present the recorded distribution	ensure no overlap occurs during necessary radius configuration
Essence	Transcribe the data distribution from data space to visual space	Translate the transcribed distribution into visual space	Express and embellish the distribution in visual space
Operation	data transformation	view transformation	visual encoding configuration
Method	DistributionTranscriptor	PolarPacking	radius adjustment tool $f_{r_{draw}}$
Satisfied criteria	C3: Bijection C1: mutual exclusion of data points	<i>C2</i> : mutual exclusion of visual nodes <i>C4</i> : distribution consistency	

Purpose	Operation	Method	Satisfied criteria
ensure no overlap occurs during necessary radius configuration	visual encoding configuration	radius adjustment tool $f_{r_{draw}}$	None

VIS2022

Two examples of applying our $f_{r_{draw}}$ to **improve the visual quality** of a scatterplot.

Solve *low contrast* issue faced by HDR datasets by moving the HD-control point to the left

Solve *outlier invisible* issue by raising the LD-control point

S2022

- Competing Algorithms

 - subspace-mapping methods: *HaGrid* and *DGrid* Full datasets
- Datasets: 50 real-world datasets, data scale ranges from 4k to 1M
 - 12 example datasets:

- Our method achieves the best or near the best scores on all metrics compared with the state-of-the-art algorithms.
- Our method takes great advantage on computational efficiency (average time cost: 1/4.6 of Hagrid, 1/47.6 of DGrid).
- Our method presents strong adaptability to high dynamic range(HDR) datasets.

•**∻**•∨IS2022

Impact of parameters on time cost:

Time Complexity: $O(N'\sqrt{N'})$

N' is the number of nodes to be packed, including **data nodes** and **dummy nodes**.

VIS2022

Impact of parameters on metrics:

- *Size* has a larger impact than *k* and *sampling rate*, and all metrics get worse as it raises.
- *Size* controls the global resolution of the captured structures.
- Our method is fairly robust on parameters.

Our method can maintain data distribution and reveal details hidden by overdraw.

Our method can overcome the crowded issue faced by state-of-the-art methods.

Our method can present rich and complete details at the micro scale.

Conclusion

- We contribute a dual space coupling model to represent the complex relationship within and between data space and visual space analytically to solve the scatterplot overdraw problem.
- The proposed model introduces a new design space for promising overlap removal algorithm and interaction paradigm.
- We also develop an overlap-free scatterplot visualization method on the basis of the model, which shows competitive advantages compared with the state-of-theart methods.

